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Abstract

A irrotational solution is derived for the steady-state Navier-Stokes

equations that approximately satisfies the boundary conditions for flow

over a finite flat plate. The nature of the flow differs substantially from

boundary layer flow, with severe numerical difficulties in some regions.

An analytic function having the form

f(z) = v + iu, (1)

leads to an exact solution of the two-dimensional steady-state Navier-Stokes
equations, i.e.,

ρ0u · ∇u = −∇p + µ∇2
u;

∇ · u = 0. (2)

This occurs because (1) leads to a velocity field having the properties

∇2
u = 0; (3)

and

∇ · u = 0;

∇× u = 0. (4)

This is a subset of the generalized Beltrami flows1, and note that (4) are
the Cauchy-Riemann equations for (1). Substituting (3) and (4) into (2), and
using the identity

u · ∇ u = (∇× u) × u +
1

2
∇u2 (5)
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leads to

ρ0

2
∇u2 = −∇p, (6)

or

p

ρ0

+
u2

2
= C. (7)

The main difficulty with (1) involves finding a function f(z) satisfying useful
no-slip boundary conditions. Consider the function

f(z) = lim
ǫ→0

1

L

∫ L

0

sin (2π (z − z0) /L) idx0

A + [B sin (2π (z − z0) /L)− A] e(z−z0)
2/ǫ

. (8)

Here z = x + iy, z0 = x0 + iy0 and y0 = 0. When y → ∞,

f(z) →
1

L

∫ L

0

sin (2π (z − z0) /L) idx0

A
= 0. (9)

Making use of the identity

sin (2π (z − z0) /L) = cos (2πx0/L) sin (2πz/L) (10)

− sin (2πx0/L) cos (2πz/L) ,

the terms cos (2πz/L) and sin (2πz/L) become large as y → ∞; however,
sin (2πx0/L) and cos (2πx0/L) are precisely zero when integrated over 0 ≤ x0 ≤

L.
When y = 0,

f(z) = lim
ǫ→0

1

L

∫ L

0

sin (2π (x − x0) /L) idx0

A + [B sin (2π (x − x0) /L) − A] e(x−x0)
2/ǫ

. (11)

When x 6= x0, the denominator in (11) diverges. However, as x → x0, the
denominator approaches B sin (2π (x − x0) /L), so that as ǫ → 0, u approaches
a rectangle function between x = 0 and x = L and v approaches zero, meeting
the boundary conditions for flow over a flat plate.

Although the integral (8) can be difficult to evaluate in some regions, soft-
ware packages seem to have less trouble converging when B >> A, at least for
y = 0. Choosing ǫ = 0.0001, A = 5.6 × 10−4, B = 100A and L = 1 m satisfies
the flat plate boundary condition as shown in figure 1. As ǫ → 0, u becomes
more step-like at x = 0 and x = 1. Numerical approaches require ǫ to be finite,
leading to regions at the plate edges where the boundary conditions are not
satisfied. These regions can be made as small as required by reducing ǫ.

The boundary layer assumptions, i.e., ∂2u
∂y2 >> ∂2u

∂x2 and ∂p
∂y = 0 are useful for

analyzing flow over a flat plate, but they break down in the region at the leading
edge2, when U0x/ν . 10000. This region of non-validity can be used to define
an acceptable region where the flat plate boundary conditions are only satisfied
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Figure 1: The u approximation to the flat plate boundary condition at y = 0
for ǫ = 0.0001.

approximately by (11) and thus determines a practical value for ǫ. When
U0 = 1 m / s and ν = 10−6 m2 / s, the extent of non-validity is approximately
defined by x . 0.01 m. Setting ǫ = 0.00001, A = 5.9 × 10−5, and B = 100A
leads to the boundary conditions being satisfied to within a tolerance on the
order of 10−6 at the edges of the regions −0.01 ≤ x ≤ 0.01 and 0.99 ≤ x ≤ 1.01
as shown in figure 2.

Although the flow described by (8) exactly satisfies the boundary conditions
for a finite flat plate when ǫ → 0 (and approximately for small but finite ǫ), the
flow field differs substantially from boundary layer flow. Figure 3 shows the re-
gions having nonzero velocity components. As y increases, the integrand evolves
into a sinusoidal-like function, until it becomes sufficiently sinusoidal that u and
v both approach zero. Just below the upper ”zero” line, small perturbations
in the sinusoidal-like integrand functions lead to nonzero velocities. In some
regions, either the first term or the second in the denominator in (8) dominate,
allowing the other to be neglected. The latter is true when y << 1 above the
plate, allowing the velocity field to be accurately approximated. When nei-
ther terms can be neglected, evaluation of the integral becomes tedious because
of very large integrand magnitudes, leading software packages to either fail to
converge or converge to incorrect solutions. Numerical determination of the
velocity field for many regions remains a challenge.
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Figure 2: The u approximation to the flat plate boundary condition at y = 0
for ǫ = 0.00001.
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Figure 3: Upper and lower ”zero” lines. All nonzero velocity components are
confined to the region between these lines.
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